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exactly solvable reaction—diffusion system

Pavel K Brazhnik and John J Tyson

Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061, USA

Received 1 July 1999

Abstract. Exact travelling wave solutions of a Fisher-type reaction—diffusion equation in two
spatial dimensions are obtained. The waves have nontrivial geometries and possess velocities
smaller and larger than that of a plane wave. The dispersion relationship and velocity-curvature
dependence generated by these solutions are characterized. Static structures with and without
circular symmetry are constructed.

1. Introduction

Finding solutions of nonlinear models is a difficult and challenging task. Several analytical
methods have been developed for obtaining travelling wave solutions for pure dispersive
nonlinear systems in one spatial dimension: the inverse scattering transfer [1], the Hirota
method [2], Lamb’s ansatz [3], etc [4]. Some of these methods may be extended to
two-dimensional (2D) systems. The problem of obtaining solutions for systems including
dissipative losses, e.g. reaction—diffusion systems, turned out to be more complex. Even
for the 1D case, most of the above-mentioned methods do not work. These problems are
usually treated by perturbation theory or numerical investigation [5-7]. Therefore, models
of dissipative systems that admit exact solutions are indispensable for understanding possible
behaviour in such systems.

The formal solution of some 1D reaction—diffusion models (e.g. quadratic Fisher equation)
yields multiple travelling wave states. Furthermore, in two and three dimensions, the shape
of the wavefront may change in the process of propagation and evolve to some stationary
configuration (pattern) which is not necessarily trivial or unique. Therefore, a challenging
problem in the theory of dissipative systems (which we partially address here) concerns the
questions: what velocity and shape of the wave will develop in the evolution process and what
is the selection mechanism? This nonequilibrium problem shares a common ground with
physical kinetics, chemical reactions and living phenomena [8, 9].

In this paper we consider an autonomous Fisher-type equation with quadratic nonlinearity
and modified diffusion

b= A= 17V = 9= 9). )
Here ¢ (¢, x, y) is some kinetic variabley and A are gradient and Laplacian operators,
respectively. Fom = 0, equation (1) is the classical Fisher equation, which occurs in models
of population growth [9], flame propagation [8], heurophysiology [10], autocatalytic chemical
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reactions [11], Brownian motion [12] and nuclear reactors [13]. The @ase2 turns out to
allow for exact solutions, which are constructed forthe 2D case below. Italso has applicationsto
real systems, such as bacterial colony growth [14], where the square-gradient term corresponds
to nonlocal growth occurring at concentration gradients. The square-gradient term is also
similar to the nonlinear terms in the Kuramoto—Sivashinsky equation for propagating flame
(where it appears as a consequence of the curvature of the flame front) [15] and in the theory
of growing interfaces [16].

Whenm = 2, the transformatiopp = 1— v~! converts equation (1) intg — Av = v—1,
and further, in terms ol = v — 1, into the linear diffusion (heat) equation [17]

w, — Aw =w (2)

solutions for which, and therefore for equation (¥ & 1 — ﬁ), can be completely

characterized. It is natural to approach the analysis of the system in two steps: first to identify
stationary configurations—the spectrum of states the system evolves to, and then to solve the
initial value (Cauchy) problem and thereby to partition the space of initial states into basins
of attractions for finite configurations. We address here only the first step, leaving the second
one for future consideration.

2. Travelling waves in one spatial dimension

Galilean invariance of equation (1) provides solutions propagating along a certain direction
with constant speed (travelling waves). In one dimension, equation (1) reduces for travelling
waves to
—c¢ =9/ — (@) =L —¢) ®)
- ¢

where a prime denotes the derivative with respect to the moving coordinate frame— ct,
with ¢ being the velocity of the wave.

Fisher found [18] that equation (3), with = 0, has an infinite number of travelling
wave solutions for which & ¢ (x, 0) < 1 and wave speeds ate> cmin = 2. Kolmogorov
et al [19] proved that for bounded (x, 0), if ¢(x,0) = 1 forx < a, and¢(x,0) = 0O for
x > b, there is a unique solution of (3), with = 0, and that this solution evolves into a
monotonic travelling wave solution (kink-likey(x — —oc0) — 1, ¢(x — +o00) — 0) with
a speed = cmin. Higher velocity waves arise when an appropriate initial gradient is present
in the system: the less steep the wave profile, the faster it moves [20]. McKean [21] showed
that any wave speed > 2 is stable (with respect to small perturbations) if the initial datum
has the right behaviour at the tails. A travelling wave solution for (3), witk 0, in explicit
form, was found by Ablowitz and Zeppetella [22] for one special case:

o(x, 1) = [1+exp&/vV6)] 2 )

The kink (4) propagates from, say, left to right with a speed 5/+/6 ~ 2.041. The problem
of selection of appropriate speed has been discussed in [20, 23, 24]. Fronts initiated on a
compact support evolve to minimum velocity solutions [23]. Travelling wave solutions for
(3), withm = 0 andc < 2, also exist but they are considered to be physically unrealistic
since¢ becomes negative for sorge ¢ — 0 at the leading edge with decreasing oscillations
aroundgp = 0.

Travelling waves for the 1D equation (3), with = 2, were studied in [17]. The general
solution for equation (2) can be expressed as the linear superposition of modes

W (w) = exp (im + a)t) (5)
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with weights determined by initial conditionst. The modes decay rapidly when0 and
are periodic in space ib < 1. We are interested in the case of travelling waves, 1. The
single-mode, travelling wave solution propagating from left to right reads then

1 1 _ 1 o= 1:) ]
p(x,1) =1 T+ Ao a)—l(x—ct)]_[1+A exp( ® 15)] @)

whereA is (here and further) some positive constant, and the velocity of the wave is uniquely

defined by its slope via
w
= ——. 8
— (8)
The functionc(w) > 0 has a ‘check-sign’ shape, with a minimunrat 2 whenw = 2.
Therefore, two waves can, except for the minimal case, propagate with the same velacity

sharp wave with slopgw — 1 = @, and a shallow wave, for whicllw — 1 = @.
The shallow wave coincides in the limit — 1 with the approximate solution for the classic
Fisher equation, the solution obtained by neglecting the second derivative in equation (3) when
m =0.

On the other hand, selection of a valuedanniquely defines the velocity of the wave. One
can show, by direct integration of equation (2), that initial perturbations generated on compact
supports (or even those which just do not have an infinite tail, e.g. step function) develop into

the travelling wave of minimal velocity.

3. Travelling waves in two spatial dimensions

In a 2D medium wave propagation is more complicated because of a multiplicity of travelling
waves. We assume here that, after an initial relaxation process, a wavefront propagates along
a certain direction with constant velocity and invariable shape¥. Such stationary propagating
waves are known for a variety of nonlinear wave models, e.g. 2D Korteveg—de Vries (KdV)
waves [25], the sine—-Gordon equation [26, 27] and excitable media [28]. The patterns
are building blocks for constructing possible stationary wave configurations in a layered
medium [29], e.g., stationary refracting and reflecting waves [30]. Approximate travelling
wave solutions with nontrivial fronts have been recently constructed for the quadratic Fisher
equation [7] (equation (1) witm = 0). The complete integrability of equation (1) fer= 2
allows us to study for the first time the multiplicity of dissipative waves on the basis of exact
solutions.

For the casen = 2 in two dimensions, we solve

Wy — Wyx — Wyy = W 9)
by the method of separation of variables

w(t,x,y) =T() - X(x)-Y(y). (10)
This generates three independent linear equations of the form

T'— T =0 (118)

X' —(w—1-0)X=0 (11b)

Y'—1Y =0 (1)

T The linear superposition rule valid for solutions of equation (2) leads to the following nonlinear superposition rule
for the solution of the initial equation (1):

93 _ 4, _¢2 . ®)
1-¢3 1-¢1 1-¢2
T Rigidly rotating, spiral-like solutions observed in excitable media are not possible in a ‘Fisher-like’ medium because
its elements, in contrast to an excitable medium, do not return to their initial state after the passage of the wave.
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with @ and being separation constants. As in the 1D casis chosen here to be positive,
and whem. = 0, equations (14), (11b) coincide with equivalent equations for the 1D case.
In general, solutions for equations @(11c) are combinations of exponential functions

T (1) = Toexplwr) (12a)
X (x) =X1exp<—\/a)—1—/\x> +X2exp(\/w—1—/\x) (12b)
Y (y) = Yrexp(—/Ay) + Yo exp(v/Ay) (1)

with Ty, X1,2, Y12 being integration constants. There are two special cases—{) — A = 0,
when

X(x)=X3-x+X4 (13)
and (i) » = 0, when
Y(y)=Ys-y+Ys 14)

Here X34, Y3 4 are again integration constants.

We are looking for wave-like solutions that travel along thaxis, sax ands must enter
the solution in a linear combination, — ct, which is impossible with (13). Thus we write
w(t, x, y) in the form

w= [Xl exp(—\/m)c +a)t) + X, exp(«/m)c +a)t)] Y (y) (15)

with Y (y) given by either (12) or (14). Also, to avoid solutions that oscillate in tkalirection,

we restricti to the half-linew — 1 > 1. The two bracketed terms in (15) correspond to waves
travelling in opposite directions. Restricting ourselves to waves propagating in the positive
direction of thex axis, we write

w(t,x,y) = w(E =x = Vyt,y) = Xrexp(—vo - 1-2§) Y(»)  (16)
where the wave propagation velocity is connecte@ and via

w
V, = ———.
P Vo—1—a
Using (8), we can also expre$% as a function of plane-front velocity, Depending on the
sign and magnitude df, we may expect patterns moving slower or faster than a plane wave.

(17)

3.1. Plane waves

The trivial generalization of 1D solutions for the 2D case is a plane wave propagating with
velocity V,, = ¢ along thex axis . = 0, Y3 = 0). The front line (a line of a constant
level, ¢ = const) is a straight line perpendicular to thexis. This travelling wave connects
homogeneous asymptotic stateg — —oo, y) = 1 and¢ (& — oo, y) = 0.

The simplest travelling wave solutions involving bothand y space variables can be
constructed from the plane wave by rotating the frame of referencet. For instance, a plane
wave propagating with velocity in the direction at an anglee from thex axis is given by

1
— . 18
1+ Aexp[—+vw — 1(x sing F y cosp) + wt | (18)
Equivalently, the wave can be thought of as a tilted plane wave propagating alonguxtie

1
s Vs 1) = 1 -
o0, y.1) 1+Aexp[—vo —1sing(x — V,1) = Vo — 1y cosp|

T Note that this simple idea does not necessarily work for any nonlinear wave model. It works for the sine—Gordon
equation but fails when applied to certain 2D extensions of KdV or Burger equations.

$x,y,1)=1

(19)
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Figure 1. V-shaped wave. Here = 2 as for the minimal
wave, and. = 3—2L which corresponds, according to (22), to
o = /2 = angle between wings of theé wave. The thick
solid curve shows the level lingg = 0.5.

with velocity
V, = ¢/ sine. (20)
On the other hand, the corresponding expression constructed from (1€)r¢aés
1

1+A exp[—«/w —1-x+ ﬁy] .
Comparing (19), (21) we get a relationship betwgemdg:
Vi=Vo-— 1cosp. (22)

Since for the wave with a positive velocity component alongith&isg runs from 0 tot-r/2,
equation (22) restricts to the segment

0<r<w—1 (23)

3.2. Vwaves

If we look for solutions invariant to inversion @f we must restricY (y) to be an even function.
The choiceY; = Y5 in (12c) leads then, fok from the segment (23), to

1
C1+4 exp(—vw — 1— &) coshiv/ry)

This is the so-called/ pattern (figure 1), known for Fisher’s equation [7] and in excitable
media [28]. The front consists of two extended, almost flat wings colliding at a certain
asymptotic anglex. In the point of collision, the wings are connected with each other by
a smooth curved area-§.~/?) where the front line turns rapidly. Like the plane wave/ a
pattern connects homogeneous asymptotic states. The connection of the separationiconstant
to the asymptotic angle between wings of the wave can be found easily because, for large
|yl, the wings of thev wave are plane waves tilted at angteg., (i.e.,a = 2¢,). Hence
Vi = Vo —1c08pin.

A V wave is a tachyonic solution, i.e., it propagates faster than a plane wave. It is also
interesting to mention that solution (24) coincides with an approximate solution fantlage
of the quadratic Fisher equation (equation (1) witk= 0) we have constructed earlier [7].

¢y =1 (24)

3.3. Oscillatory solutions

If now A < 0, the real functiont (y) in (12c) turns into the trigonometric cosine, leading
therefore to the front oscillating in space:

1

T T+ Aexp(—vo —1-i8) cos(V—ry) (@5)

. y)=1
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Figure 2. Space oscillating front (propagating fingers) éoe= 2, andi = f%: (a) surface plot;
(b) three curves of constant leve; = 0.25, 05 and 075.

305 V

0.0 A Figure 3. Dispersion curves for the space oscillating solutions: the
e J ! ! thick solid curve is for = 2, while the thin solid and dashed curves
0 4 8 12 are forc = 2.5, for shallow and sharp waves respectively.

This solution is singular because the denominator in expression (25) becomes zero for some
value ofz andy. However, not only is (y) ~cos+/—Ay) a solution of (1) but so also is

Y(y) ~ | cog+/—1y)|. Using the latter solution we can construct bounded space-oscillating
fronts in the form

1
C1+A exp(—+vw — 1= &) |cos(v—=ry)|

A typical pattern of these propagating ‘fingers’ is shown in figure 2. The wavelength of the
front, A = /+/—A, runs fromz, whenx = —1, tooo (the front converts into a plane wave),
wheni — 0. As. — —oo, the wavelength of the pattern drops to zero. Using (17), we can
write the ‘dispersion’ relationship (the dependence of wave speed on the wavelength):

(26)

P&, y) =

Vym 27)

7\2
1+ .45 (%)

Several different curves are depicted in figure 3. Qualitatively they are similar to those found
for Fisher’s equation in [7].
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Figure 4. Separatrix solution = 2): (a) surface plot; i) three curves of constant level:
¢; = 0.25, 05 and 075.

3.4. Separatrix

The case. = 0, Y3 = 0 describes, as we discussed earlier, a plane wave moving alorg the
axis with velocityV, = c. If Y3 # 0 butYs = 0, we get an inhomogeneous solution of the
form
1
1+Aly|exp(—vw — 1)
This ‘separatrix’ solution and level lineg (= ¢, = const) are depicted in figure 4. The
level lines straighten out, as— +o0o0, and become orthogonal to theaxis. Therefore, they

propagate with the velocity of a plane wawé,(= ¢). Thus, in 2D unrestricted media there
exist two waves, the plane wave and the separatrix wave, which propagate withcspeed

p(x,1) = (28)

3.5. Ywaves

One more option exists for positive

1
T 1+ Aexp(—vo — 1—A£)|sinh(v/Ay)|
This solution, known as ar*wave’, differs qualitatively from the separatrix solution only by
the angle between asymptotes.2 for the former it can be any positive value between zero

andr, while for the latter it is exactlyr. The connection betweenandy,, is identical to the
one forv waves.

PE.y) = (29)

4. Velocity-curvature dependence

For systems with dissipative loss supporting propagating waves, a low-level model can often be
formulated to simplify the description of solitary waves, which in the 2D case approximates the
propagating wavefront with an evolving front line [26,31-35]. The crucial concept connecting
such geometric models to their microscopical (PDE) counterparts is the dependence of local
wave velocity,V, of the wave on the curvature of the front line, (Therefore, models of

this kind are sometimes referred to as curvature-driven interface modé(s)) is a linear
function (for |k| small) for crystal growth problems [31, 35] and for excitable media (eikonal
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approximation) [36]. For excitable medit (k) remains almost a linear function for negative
k but deviates from the eikonal approximation significantly for posiivexhibiting a critical
value beyond which stationary propagation of the curved front is impossible. Experiments
with waves in a chemical excitable medium (the Belousov—Zhabotinsky reaction) confirm
qualitatively such behaviour [37]. Recently, a nonlinear, cubic-like curve k(V) has been
derived for the stationary propagating fronts of Fisher’s equation on the basis of approximate
2D solutions [7]. Theoretical derivations Bf(k) are usually based on semi-phenomenological
arguments or on perturbation analysis of corresponding PDE models. The solutions we have
found in section 2 allow us, for the first, time to construct exact analytical expressiongidpr
from nontrivial solutions of a 2D reaction—diffusion-like PDE model.

We associate a front line with a line of constant leyé}, y) = ¢, = const. This defines

a curve in the planés, y)_. The curyature of the front line is t_hen given by; %
Furthermore, the velocity of stationary patterns propagating along tes is related to
the local normal velocity of the front line a8 = V,sing, where the angle between
the x axis and the tangent to the front ling, can be evaluated from the relationship

2= _(z_i)qﬁzconst = tang. Appropriately combining these three expression we may find

V(k; ¢1).
The dependence of the normal velocity on front curvature determined (@4) andY
waves (29), space-oscillating (25), and separatrix (28) waves in the above-described way turns

out, remarkably, to be the same expression:
VN (Vv
C C

yzm(l_%>. (31)

w —

where

This relationship is independent of the level line chosen because, as can be seen from the
general solution, all lines of constant level have, for a given pattern, the same shape. For a
plane wavek = 0,1 = 0 andV = c. A = 0 also for the separatrix solution. For other waves,
A can be replaced by a meaningful, pattern-dependent parameter: f@r #mal Y-shaped
waves . is a function of the asymptotic angle = (o — 1)(singx, )2, while for the oscillating
front A is related to the wavelength of the pattem= 7 //—X.

The cubic-like curve (30) is depicted in figure 5. The similar antisymmetric branch for
negativeV is not shown in the figure. The portion of the curve which starts from zero and

Figure 5. Dependence of the local normal front velocity on front
curvature. The thick solid curve corresponds to the separatrix case,
A =0, withew = 2, hencey = 1. The thin solid and dashed curves
are forc = 2.5 andx = —% (space oscillating solution) for shallow

(w = 1.25,y = 1.5) and sharpdg = 5, y = 2.25) waves respectively.
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has positive inclination is usually associated with nonstable waves; the rest of the curve has
negative slope, reflecting the stabilizing role of diffusion [38]. The maximum positive curvature
ke = 327y§ achievable on a stationary propagating front depends on spatial characteristics of
the pattern, becausedepends on. The fragment of the front with the maximum curvature
moves with the slowest velocity,.. = ¢/~/3, which, surprisingly, is independent of

For small curvatures (30) becomes

Vec— <k (32)
2y

For the wave of minimal speed = cmin = 2, equation (32) recovers the eikonal approximation

for excitable media (with the coefficient in frontbEqual to unity) if we take into account the

fact that small curvature can be realized only i§ small (e.g.Vv waves with large asymptotic

angle, therefore close to plane wave, or oscillating fronts with large periods). For large negative

curvature, equation (30) gives the deviationvofrom the linear approximation (32) towards

smallerV. Also notice that equation (30) turned out to be identical tovthef k dependence

derived for travelling waves in Fisher’s equation [7].

5. Static structures

Static structures appear as a special case for travelling wavesiWyherd. In one dimension,
the static equation (2) is a single-mode harmonic oscillator, implying that
1
Pp(x) =1 1+ o] 0| (33)

with wg being (here and throughout) a positive integration constant. By contrast, the 2D static
case, described by equations i§1,1(11c) with » = 0, admits multiple frequencies for either
X orY. Thus, the additional spatial degree of freedom introduces a one-parameter family of
static solutions (parametrized hy.

We consider only the regioh < —%, since the complementary case> —% can be
obtained from the first one by interchangingand y. General static solutions are then
combinations of exponential functions @2 (12c) except for the special case, this time at

A = —1, whenX (x) turns into a first-order polynomial (13). For negatieequation (12)
takes the form
Y=Y, cos(\/ —Ay) (34a)

with Yo being an integration constant.

The trivial generalization of 1D periodic static structures to two dimensions corresponds to
the special cask = —1 with X3 = 0. The corresponding family of solutioggx, y) = ¢ (y)
(parametrized, e.qg., by,) repeats the behaviour of 1D solutions in #hdirection and remains
homogeneous (invariable) in thedirection. The pattern of parallel stripes has a unique period
7, but variable amplitude and flatness of the humps determined, by

For-1< A < —%, solutions for bothX andY are trigonometric functions, giving

1
Ppx,y)=1— : (34b)
1+wo ‘cos(«/l +Ax>’ |cos(v=1y)|
Wheni = —%, the spatial periods are equal in both directions, producing the ‘chicken skin’

pattern depicted in figure 6. The spatial period in this case (—%) is +/2 times larger than
the spacing of the stripes in the previous case-(—1). As decreases, the humps elongate
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Figure 6. 2D static solutions fok = % ‘chicken skin’ pattern.

in X and shrink inY directions. Notice also that, when boundary conditions are applied, these
structures require a minimal system size for their existence.

Standing finger patterns, similar in shape to the moving ones, appeanwhenl and
one of the integration constanfs; or X5, is zero. Then

1
1+ exp[£v/—1—2x] [cos(v/=1y)|

In order to consider only the bounded solution, we assumeaudhat 0, and take the absolute
value of the cosine. Notice that, aslecreases, the spatial period in thdirection decreases
and the kink in theX direction becomes steeper.

Several other static structure are possible wién) is chosen to be cogky—1 — Ax),
| sinh(+/—1 — Ax)| or |x|. Qualitatively, these structure look like two sets of standing finger
patterns pointing at each other acrossthaxis. Standing vortexes, such as those known for
the sine—Gordon equation [39], are not possible in our case because, foy anlgast one
componentX (x) or Y (y), is a space-oscillating function.

Static structures with circular symmetry can also be constructed by separation of variables,
w = R(r)®(p). The radial componemk(r) then turns out to be a Bessel functigp(r) and
the angular componeri () is a trigonometric function. Therefore, single-mode solutions
for ¢ are given by

$x,y)=1 (34c)

1
P = T e, cosing) %)

where 0< wg < 1 (to eliminate singular solutions), and we have omitted a phase-shifting
constant. The case= 0 corresponds to a ‘Mexican hat’ isotropic solution, while- 0 leads
to solutions with broken symmetry.

6. Discussion and conclusions

Our investigation shows explicitly that stationary travelling waves in a 2D reaction—diffusion-
like system may have different geometries, which, together with the reaction rate and diffusion
coefficient, affects the propagation velocity of waves. Inan unbounded, spatially homogeneous
medium, five characteristic solutions have been identified: plgr@sdy waves, a ‘separatrix’
wave, and space-oscillating propagating fronts. The possibility of time-invariant propagating
fronts with such geometries was predicted in [40] on the basis of a coarse-scale geometrical
model. This work constitutes the first constructive proof of the existence of these waves. When
the medium becomes bounded (an infinitely long stripe) and no flux is allowed through the
boundaries, only two waves survive (plane and oscillating), because the front line of the wave
must approach the boundary orthogonally.

The velocity of the wavé/,, may be considered as a bifurcation parameter. The slowest
wave is an oscillating front; its velocity increases with increasing wavelength. When velocity
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reaches the value corresponding to the plane wavke wavefront bifurcates into two distinct
configurations, a plane wave and a ‘separatrix’ wave, which give birth with an incredse of

to Vv andY waves, respectively. The Cauchy problem for equation (1), answering the question
of which initial conditions lead to which stationary travelling waves, remains to be explored.

Fisher’'s equation is a prototype for nonlinear models of many different sorts. Therefore its
solutions are reminiscent of patterns seen in different fialdgaves have been characterized
in crystal-growth models [35] and in excitable media [28], but only in the framework of
geometrical (kinematic) models. Space-oscillating fronts are reminiscent of solidification
fingers[41], and may be relevantto cellular flame structures and patterns arising from diffusion-
induced instability of the planar front in chemical reaction—diffusion systems [42]. The
solutions we have constructed may be good starting points for developing more elaborate
PDE-based theories of these patterns.

Media capable of supporting periodic trains of plane waves, e.g. excitable media, exhibit
often a dependence of wave velocity on the spagirfggtween pulses, which is traditionally
called the ‘dispersion relationship’ . Media described by Fisher-type equations are not able to
support periodic wave trains, but, as we have shown, in two dimensions they support isolated
travelling waves with space-oscillating fronts (the hump-like front fragment repeats itself in
the direction orthogonal to its direction of propagation). Such waves exhibit a nontrivial
dependence of front velocity on spatial period (wavelengtii3ee also [7]). This kind of the
dispersion relation is different in its underlying mechanism because dispersion in excitable
media is due to the influence of a second component, an ‘inhibitor’ , which is absent in our
case. Nevertheless, the dispersion curve we have constructed is qualitatively similar to the one
found in 1D excitable media.

The velocity-curvature dependence we found exhibits a critical curvature, similar to
the case of excitable media [36]. In excitable media the critical curvature is thought to be
attributable to the presence of an inhibitor in the system, but our study shows that critical
curvature is present even in a scalar model. In excitable media a front whose curvature exceeds
the critical curvature breaks at this point and may evolve consequently into spirals. The scenario
for the evolution of supercritical fronts in Fisher-like systems is not clear yet.
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